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1 Background

In his famous book, ”An Introduction to Probability Theory and its Applications”, Third
Edition. Volume 1 [3] William Feller develops an interesting and somewhat counterin-
tuitive result for the sum of n mutually independent random variables Xk such that
each one assumes the values 1 and 0 with probabilities pk and qk = 1− pk respectively
(see [3] pages 230-231). He is interested in an interpretation of the variance of the sum
Sn = X1 +X2 + · · ·+Xn so he proceeds as follows.

For each k we have that the expectation of Xk, E(Xk) = pk and the variance:

Var(Xk) = E(X2
k)− (E(Xk))2 = pk − p2k = pkqk (1)

If you have trouble seeing where these results come from, recall that since the Bernoulli
variable Xk can take the value 1 with probability pk and 0 with probability qk, hence
E(Xk) = 1 × pk + 0 × qk = pk. The variance is defined as Var(Xk) = E((Xk − µ)2) =
E(X2

k − 2µXk + µ2) = E(X2
k)− 2µE(Xk) + E(µ2) = E(X2

k)− 2µ2 + µ2 = E(X2
k)− µ2.

Note that E(Xk) = µ and the linearity of the expectation operator has been used.
Also the expectation of a constant, eg µ2 is just the constant itself. Finally note that
E(X2

k) = 12 × pk + 02 × qk = pk.

We know that the variance of the sum of n mutually independent random variables Xk,
Sn =

∑n
k=1Xk is:

Var(Sn) =

n∑
k=1

σ2k where: σk =
√

Var(Xk) (2)
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A proof of (2) can be found in the Appendix.

Hence, using (1) we have:

Var(Sn) =

n∑
k=1

Var(Xk) =

n∑
k=1

pkqk (3)

2 Feller’s description of the issue

I will simply quote Feller at [3 page 231]:

”..the variable Sn may be interpreted as the total number of successes in n independent
trials, each of which results in success or failure. Then p = p1+···+pn

n is the average
probability of success, and it seems natural to compare the present situation to Bernoulli
trials with the constant probability of success p. Such a comparison leads us to a striking
result. We may rewrite (3) in the form:

Var(Sn) = np−
n∑

k=1

p2k (4)

Next, it is easily seen (by elementary calculus or induction) that among all combinations
pk such that

∑n
k=1 pk = np the sum

∑n
k=1 p

2
k assumes its minimum value when all the pk

are equal. It follows that, if the average probability of success p is kept constant, Var(Sn)
assumes its maximum value when p1 = · · · = pn = p. We have thus the surprising result
that the variability of pk, or lack of uniformity, decreases the magnitude of chance
fluctuations as measured by the variance. For example, the number of fires in a commu-
nity may be treated as a random variable; for a given average number, the variability
is maximal if all households have the same probability of fire. Given a certain average
quality p of n machines, the output will be least uniform if all machines are equal. (An
application to modern education is obvious but hopeless.)”

3 Discussion

The final italicized comment by Feller above is indeed surprising even given the sim-
plifying assumptions made. Notwithstanding Feller’s stature as a probabilist (he was
responsible for major analytic work on the Central Limit Theorem in the 1930s) let’s
nevertheless satisfy ourselves that he is right.

The way the issue is set up what we have is an optimisation problem:

Minimise
∑n

k=1 p
2
k subject to the constraint: p = p1+···+pn

n is constant ie
∑n

k=1 pk =
np
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In the language of Lagrange multipliers we thus have something of the form of minimising
F (p1, p2, . . . , pn) subject to φ(p1, p2, . . . , pn) = 0. Here F (p1, p2, . . . , pn) =

∑n
k=1 p

2
k and

φ(p1, p2, . . . , pn) =
∑n

k=1 pk − np = 0. Thus we form the auxiliary function:

G(p1, p2, . . . , pn) = F (p1, p2, . . . , pn) + λφ(p1, p2, . . . , pn) (5)

To find an extremum we need:

∂G

∂pk
= 0 ∀k (6)

Recall that this is a necessary condition so further investigation is needed to establish
that we actually have a minimum.

Making the relevant substitutions in (5) we have:

G(p1, p2, . . . , pn) =
n∑

k=1

p2k + λ
( n∑
k=1

pk − np
)

(7)

Differentiating we get:

∂G

∂pk
= 2pk + λ = 0 =⇒ λ = −2pk ∀k (8)

Now (8) only makes sense when the pk are constant ie pk = p∗ for all k. The constraint∑n
k=1 pk − np = 0 then becomes

∑n
k=1 p

∗ − np = 0. Therefore np∗ − np = 0 and so
p∗ = p = p1+···+pn

n .

To see that p = p1+···+pn
n = pk ∀k actually minimises

∑n
k=1 p

2
k perturb two of the pk as

follows. Without loss of generality we can relabel the pk so that p1 ≤ p2 ≤ · · · ≤ pn.
Let:

p∗1 = p1 − ε, p∗2 = p2 + ε (9)

where ε > 0. The other values of pk remain the same ie p∗k = pk for k 6= 1, 2. Hence
np = np∗ = n

∑n
k=1 p

∗
k ie it is constant. Thus:

n∑
k=1

p2k−
n∑

k=1

p∗ 2k =
n∑

k=1

p2k−
(
(p1−ε)2 +(p2 +ε)2)+p23 + · · ·+p2n

)
= −2ε2−2ε(p2−p1) < 0

(10)
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Noting the assumption that p1 ≤ p2. Thus
∑n

k=1 p
2
k <

∑n
k=1 p

∗ 2
k and so we do indeed

have a minimum.

In two dimensions we can satisfy ourselves that p = p1+p2+p3
3 minimises

∑n
k=1 p

2
k and

hence maximises the variance defined in (4) as Var(Sn) = np−
∑n

k=1 p
2
k. Let:

f(p1, p2) = 2
(p1 + p2

2

)
−

2∑
k=1

p2k = p1 + p2 −
2∑

k=1

p2k (11)

Recall that if f : R2 → R is differentiable at ~p with continuous second partials at all
points sufficienty close to ~p and ~∇f(~p) = ~0, then if the determinant of the Hessian at ~p

is strictly positive then if ∂2f
∂x2 > 0 at ~p implies a local minimum at ~p.

The Hessian is defined as follows:

H(p1, p2) =


∂2f
∂p21

∂2f
∂p2 ∂p1

∂2f
∂p1∂p2

∂2f
∂p22

 (12)

Of course the assumption of continuous second partials means that ∂2f
∂p2 ∂p1

= ∂2f
∂p1∂p2

but
(12) gives the structure in the general case.

Thus:

detH(p1, p2) =

∣∣∣∣−2 0
0 −2

∣∣∣∣ = 4 > 0 (13)

Note that the extremum is given by:

~∇f(p1, p2) =


∂f
∂p1

∂f
∂p2

 =

1− 2p1

1− 2p2

 =

0

0

 =⇒ p1 = p2 =
1

2
(14)

Thus we have a local minimum at p = p1+p2
2 = 1

2 .

In n dimensions the local minimum will exist where the Hessian is non-zero and the
eigenvalues of the Hessian at the extremum are all positive. See [2 pages 260-262] for a
discussion.

An inductive proof (alluded to by Feller) is perhaps more ”satisfying” in showing that
p = p1+···+pn

n minimises
∑n

k=1 p
2
k . The base case of n = 1 is trivial (and bereft of useful

insight) so we consider n = 2. Thus:
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2∑
k=1

p2k −
2∑

k=1

p2 = p21 + p22 − 2
(p1 + p2

2

)2
=
p21 − 2p1p2 + p22

2
=

(p1 − p2)2

2
≥ 0 (15)

Thus
∑2

k=1 p
2 is minimal. Now for n+ 1 we have, where p∗ = p1+···+pn+pn+1

n+1 :

n+1∑
k=1

p2k −
n+1∑
k=1

p∗ 2 =
n+1∑
k=1

p2k − (n+ 1)
(p1 + · · ·+ pn + pn+1)

2

(n+ 1)2

=
n∑

k=1

p2k + p2n+1 −
(np+ pn+1)

2

n+ 1

≥ np2 + p2n+1 −
(n2p2 + 2n p pn+1 + p2n+1)

n+ 1

using the induction hypothesis that

n∑
k=1

p2k ≥
n∑

k=1

p2 and np =

n∑
k=1

pk is constant

=
n(n+ 1)p2 + (n+ 1)p2n+1 − n2p2 − 2n p pn+1 − p2n+1

n+ 1

=
n2p2 + np2 + np2n+1 + p2n+1 − n2p2 − 2n p pn+1 − p2n+1

n+ 1

=
np2 − 2n p pn+1 + np2n+1

n+ 1

=
n(p− pn+1)

2

n+ 1
≥ 0

(16)

Thus
∑n+1

k=1 p
2
k ≥

∑n+1
k=1 p

∗ 2 and so the proposition is established by induction.

There is an analogy between this problem and that of finding the discrete probability
distribution on the points {p1, p2, . . . , pn} with maximal information entropy. Thus we
need to maximise the Shannon entropy defined by:

f(p1, . . . , pn) = −
n∑

k=1

pk log2 pk (17)

For there to be a legitimate probability distribution we need the following constraint:

g(p1, . . . , pn) =
n∑

k=1

pk = 1 (18)
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Using Lagrange multipliers we proceed by forming the auxiliary equation:

f(p1, . . . , pn) + λ
(
g(p1, . . . , pn)− 1

)
(19)

and so we require:

∂

∂pk

{
−

n∑
k=1

pk log2 pk + λ
( n∑

k=1

pk − 1
)}

= 0 evalulated at ~p = ~p∗ (20)

There are n separate equations in (20) and when we carry put the dfferentiation for
k = 1, 2, . . . , n we get:

0 = − log2 p
∗
k − pk

∂(log2 p
∗
k)

∂pk
+ λ

= − log2 p
∗
k − pk

∂(
ln p∗k
ln 2 )

∂pk
+ λ

= −(log2 p
∗
k +

1

ln 2
) + λ

∴ λ = log2 p
∗
k +

1

ln 2

(21)

The last line of (21) implies that all the p∗k are equal because they depend solely on λ.
Thus p∗k = p for all k but the constraint

∑n
k=1 p

∗
k = 1 means that np = 1. Thus the

required distribution is uniform with probability p∗k = 1
n .

More detail on optimisation theory applying to entropy maximisation can be found in
[4, pages 222-228]

Feller also notes at [3, page 282] that Sn has a Poisson distribution in the limit ie
where the pk depend on n is such as way that the largest pk tends to zero, but the
sum p1 + p2 + · · · + pn = λ remains constant. This result is derived using probability
generating function techniques.

4 Application to investment and MOOCs

In the investment world each asset manager invests in a variety of assets eg domestic
shares, international shares, bonds etc and their individual performance for each asset
class can be measured. However, in so doing one has to be aware of the games that the
asset managers play. For instance, they can pick benchmarks that are relatively easy to
exceed. They can play with how they disclose performance eg pre-tax and fees versus
after tax and fees. Frequently performance is related to the performance of the median
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manager for that asset class ie 50% of the managers will have performance higher than
that manager. Feller’s comment that ”given a certain average quality p of nmachines, the
output will be least uniform if all machines are equal clearly has fundamental relevance
to the performance of asset managers. If we found that the average probability of a
universe of asset managers exceeding some asset class benchmark was 70%, say, the
performance of this group of managers would be least uniform if all the managers beat
the benchmark with this probability. Given the propensity for herd like behaviour among
asset managers in some contexts this theoretical proposition could assume more practical
significance. I am not aware of an empirical work on this specific issue. This principle
also has important implications for massive on-line open courses (MOOCS).

5 Appendix

To prove equation (2) we suppose that X1, . . . , Xn are n mutually independent random
variables with finite variances σ21, . . . , σ

2
n and Sn = X1 + · · ·+Xn.

We let µk = E[Xk] and mn = µ1 + · · · + µn = E[Sn]. Then Sn − mn =
∑n

k=1(Xk −
µk)

Then:

(Sn −mn)2 =
( n∑

j=1

(Xj − µj)
)( n∑

k=1

(Xk − µk)
)

=

n∑
k=1

(Xk − µk)2 + 2

n∑
j<k

(Xj − µj)(Xk − µk)

(22)

Taking expectations of both sides and using the linear properties of the expectation
operator we get:

Var(Sn) = E
[
(Sn −mn)2

]
= E

[ n∑
k=1

(Xk − µk)2 + 2

n∑
j<k

(Xj − µj)(Xk − µk)
]

= E
[ n∑
k=1

(Xk − µk)2
]

+ 2E
[ n∑
j<k

(Xj − µj)(Xk − µk)
]

=
n∑

k=1

E
[
(Xk − µk)2

]
+ 2

n∑
j<k

Cov(Xj , Xk)

=

n∑
k=1

E
[
(Xk − µk)2

]
=

n∑
k=1

σ2k

(23)
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In (23) the term 2
∑n

j<k Cov(Xj , Xk) = 0 because the Xj , Xk are mutually indepedent.
This fundamental fact about the covariance is established as follows:

Cov(Xj , Xk) = E
[
(Xj − µj)(Xk − µk)

]
= E

[
XjXk −Xj µk −Xk µj + µj µk

]
= E

[
XjXk

]
− E

[
Xj µk

]
− E

[
Xk µj

]
+ E

[
µj µk

]
= E

[
Xj

]
E
[
Xk

]
− µkE

[
Xj

]
− µjE

[
Xk

]
+ µj µk using independence E[XY ] = E[X]E[Y ]

= µjµk − µk µj − µj µk + µj µk

= 0

(24)
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