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1 Introduction

In his TED (www.ted.com) lecture titled ”How stats fool juries” [1], Australian
mathematician/statistician, Peter Donnelly who is Professor of Statistical Sci-
ences at Oxford University, demonstrates just how poorly the judicial system is
in handling probabilistic and statistical arguments. He does this in two ways.
First he takes a really simple coin flipping experiment and then asks the audience
for its opinion on the answer. The problem is this: you toss an unbiased coin
many times and count the number of tosses until you get the pattern ”HTH”.
You then calculate the average. You repeat the experiment but this time you
look for the pattern ”HTT”. The question is: ”Is the average number of trials
required to get ”HTH” greater than, less than or equal to the average number of
trials required to get ”HTT”? ” The audience not surprisingly said the number
of trials were equal. I say ”not surprisingly” because the probability of ”HTH”
is 1

8 which is the same as the probability of ”HTT” so in that sense naive intuition
might suggest the expected tosses are equal. In fact they are not: the expected
number of trials to get ”HTH” is 10 while the expected number of trials to get
”HTT” is 8.

As Donnelly points out, even experienced professional matematicians get this
wrong. I am unable to do the required calculations in my head (possibly Johnny
von Neumann could do if he were alive today, given the documented instances
of his genius for complex mental calculations) since they are inherently com-
plicated but there are two ways to convince oneself that the naive answer is
wrong. First, write a computer program to generate random strings of ”H”
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and ”T” and count how many tosses are required to get the relevant string and
then repeat the experiment many times and then take the average. I did this in
Mathematica with a short program which generated ”0” and ”1” for head and
tail respectively. The second method, which is far more difficult, is to derive an
analytic expression for the relevant expectations (ie average). This requires a
knowledge of generating functions and recurrence/renewal theory. I will come
to the detail of the calculations shortly. However, Donnelly’s point is that even
with such a simply stated problem we as ”reasonable” people will invariably
get it wrong. Once one translates those cognitive defects to the judicial system
the problems can involve serious consequences.

With this background Donnelly gives an overview of Bayes’ Theorem and its
applications before he leads into the infamous Sally Clark case in the UK.
Briefly, Sally Clark’s first child died of sudden infant death syndrome (SIDS).
Unfortunately her second child also died and this led to murder charges be-
ing laid against her. An important piece of ”evidence” in her conviction was
the opinion of a pediatrician who gave evidence that for a family such as
Sally Clark’s socio-economic status, the probability of one SIDS death is 1

8500
and hence the probability of two SIDS deaths is 1

8500 ×
1

8500 = 1
72250000 . A de-

tailed commentary on the case by lawyer Vincent Scheurer (who has a long
standing interest in probability theory and statistics) can be accessed here:
http://understandinguncertainty.org/node/545#notes. His article also in-
cludes links to the relevant judicial decisions.

The details of the Sally Clark legal decision are quite simply outrageous. Certain
exculpatory evidence was withheld from the defence. That evidence suggested
that the first child died of a bacterial infection. Professor Sir Roy Meadows is
the pediatrician who came up with the faulty statistical ”analysis” that played
a role in the conviction. He had previously done work on the factors associated
with SIDs and that research cautioned about assuming the very independence
that formed the basis for Meadows’ faulty calculation. The President of the
Royal Statistical Society said the following to the Lord Chancellor in a letter in
2002:

”The calculation leading to 1 in 73 million is invalid. It would only be
valid if SIDS cases arose independently within families, an assump-
tion that would need to be justified empirically. Not only was no such
empirical justification provided in the case, but there are very strong
reasons for supposing that the assumption is false. There may well be
unknown genetic or environmental factors that predispose families
to SIDS, so that a second case within the family becomes much more
likely than would be a case in another, apparently similar, family.
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A separate concern is that the characteristics used to classify the
Clark family were chosen on the basis of the same data as was used
to evaluate the frequency for that classification. This double use of
data is well recognised by statisticians as perilous, since it can lead
to subtle yet important biases.

For these reasons, the 1 in 73 million figure cannot be regarded as
statistically valid. The Court of Appeal recognised flaws in its cal-
culation, but seemed to accept it as establishing ”... a very broad
point, namely the rarity of double SIDS” [AC judgment, para 138].
However, not only is the error in the 1 in 73 million figure likely to be
very large, it is almost certainly in one particular direction - against
the defendant. Moreover, following from the 1 in 73 million figure at
the original trial, the expert used a figure of about 700,000 UK births
per year to conclude that ”... by chance that happening will occur
every 100 years”. This conclusion is fallacious, not only because of
the invalidity of the 1 in 73 million figure, but also because the 1 in
73 million figure relates only to families having some characteristics
matching that of the defendant. This error seems not to have been
recognised by the Appeal Court, who cited it without critical com-
ment [AC judgment para 115]. Leaving aside the matter of validity,
figures such as the 1 in 73 million are very easily misinterpreted.
Some press reports at the time stated that this was the chance that
the deaths of Sally Clark’s two children were accidental. This (mis-
)interpretation is a serious error of logic known as the Prosecutor’s
Fallacy1 . The jury needs to weigh up two competing explanations
for the babies’ deaths: SIDS or murder. The fact that two deaths by
SIDS is quite unlikely is, taken alone, of little value. Two deaths by
murder may well be even more unlikely. What matters is the rela-
tive likelihood of the deaths under each explanation, not just how
unlikely they are under one explanation.

The case of R v. Sally Clark is one example of a medical expert wit-
ness making a serious statistical error. Although the Court of Appeal
judgment implied a view that the error was unlikely to have had a
profound effect on the outcome of the case, it would be better that the
error had not occurred at all. Although many scientists have some
familiarity with statistical methods, statistics remains a specialised
area. The Society urges you to take steps to ensure that statistical evi-
dence is presented only by appropriately qualified statistical experts,
as would be the case for any other form of expert evidence.” [2]

3



The fact that this ”evidence” was clearly not even expert statistical evidence
(Meadows was not a statistician) but still found its way into the system suggests
that not only was the defence counsel comatose but how little care the judge
had in letting such dangerous nonsense being put to the jury. The intellectual
gymnastics and dishonesty of the two appeal cases merely reinforce the view
that the judicial system is more concerned with judicial and administrative
convenience than anything approximating justice. Mrs Clark died in 2007 of
alcohol poisoning. I wonder what the probability is that she drank herself to
death. Maybe Professor Meadows knows. Her husband tried to have Meadows
struck off for serious professional misconduct and was initially successful but
Meadows appealed and the appeal court held that what he did was merely
”misconduct”, not ”serious misconduct”.

The judicial arrogance and stupidity do not stop here. A 2013 English Appeal
Court case [3] has had the effect of banning Bayesian reasoning in court cases.
The judges made the following comments:

”The chances of something happening in the future may be expressed
in terms of percentage. Epidemiological evidence may enable doctors
to say that on average smokers increase their risk of lung cancer by
X%. But you cannot properly say that there is a 25 per cent chance that
something has happened: Hotson v East Berkshire Health Authority
[1987] AC 750. Either it has or it has not. ”

Cambridge statistician David Spiegelhalter explains the substance of the case in
his blog [4]. His exasperation at trying to explain the concepts to these serial
dopes is clearly evident. They just don’t get it at any level. It is like trying to
explain quantum mechanics to Neanderthal man. Peter Donnelly’s explanation
of disease testing in his TED talk would be a good starting place for these judges
as it explains the interaction between likely and unlikely events in a practical
way that even they might be able to comprehend, although I suspect that the
judicial world is too enamoured of word games and false logic to ever really
understand the concepts at issue.

With this depressing background let’s move to a mathematical analysis of the
”simple” problem Peter Donnelly presented to his audience.
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2 A simple program to verify the expected number of
tosses

Here is a program in Mathematica 10.1.0.0 which calculates the average number
of trials needed to generate ”HTH”. In this case 10,000 trials were run.

The average number of tosses obtained is 10.1196. This program works by
generating a random string of 0s (ie ”H”) and 1s (ie ”T”) (1000 are generated
so that one can be sure that a run of ”HTH” will actually be generated) and
the string ”HTH” is slid along the complete random string until the first match
occurs.

When the program is run for trials ranging from 103 to 20× 106 the graph of the
results is as follows:
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The raw data is as follows (note that since the random number generator was
restarted the average for 10,000 runs is different from that given above):

Number of trials Average number of tosses to get “HTH”
1000 9.66
10000 10.0133
20000 10.1303
30000 10.0346
40000 10.0185
50000 9.99354
60000 9.997572
70000 9.9923
80000 9.96775
90000 9.98018
100000 10.0372
150000 10.0097
200000 10.0116
250000 9.99474
300000 9.97449
500000 10.0292
750000 10.0226
1000000 9.99648
20000000 10.0033
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When the program is run 10,000 times for ”HTT” the average is 8.0507:

The corresponding graph for ”HTT” for trials ranging from 103 to 20 × 106 is as
follows:
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The raw data is as follows (note that since the random number generator was
restarted the average for 10,000 runs is different from that given above):

Number of trials Average number of tosses to get “HTT”
1000 7.867
10000 7.9906
20000 8.0056
30000 8.01223
40000 7.97073
50000 8.00466
60000 8.00217
70000 7.9926
80000 7.98951
90000 7.98921
100000 7.99238
150000 8.00015
200000 7.99946
250000 8.00224
300000 8.00619
500000 7.99514
750000 7.9947
1000000 7.99677
20000000 7.99888
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3 An analytic expression for the expected number of
tosses

To understand what follows it is necessary to read Chapters 11 and 13 of [5]
where the theory of generating functions is developed. Feller gives the following
concrete coin tossing example [5, page 278]. Let qn be the probability that in n
tosses of an ideal coin no run of three consecutive heads appears. He notes that
qn is not a probability distribution: if pn is the probability that the first run of
three consecutive heads end at the nth trial, then pn is a probability distrbution,
and qn represents its ”tails”, qn = pn+1 + pn+2 + . . . ). He then goes on to state the
following recurrence relation:

qn =
1
2

qn−1 +
1
4

qn−2 +
1
8

qn−3 (1)

He explains (1) as follows:

”In fact, the event that n trials produce no sequence ”HHH” can occur only when
the trials begin with ”T”, ”HT”, or ”HHT”. The probabilities that the following
trials lead to no run ”HHH” are qn−1, qn−2 and qn−3 respectively and the right hand
side of (1) therefore contains the probabilities of the three mutually exclusive
ways in which the event ”no run HHH” can occur.”

Clearly q0 = q1 = q2 = 1 and qn can be found recursively from (1). For instance,
q9 = 0.535156 . To derive the generating function relating to (1) we define:

Q(s) =

∞∑
n=0

qnsn (2)

We multiply (1) by sn and sum for n ≥ 3:
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∞∑
n=3

qnsn =
1
2

∞∑
n=3

qn−1 sn +
1
4

∞∑
n=3

qn−2 sn +
1
8

∞∑
n=3

qn−3 sn

Q(s) − 1 − s − s2 =
1
2

(q2s3 + q3s4 + . . . ) +
1
4

(q1s3 + q2s4 + . . . ) +
1
8

(q0s3 + q1s4 + . . . )

=
s
2

(q2s2 + q3s3 + . . . ) +
s2

4
(q1s + q2s2 + . . . ) +

s3

8
(q0 + q1s + . . . )

=
s
2

(Q(s) − 1 − s) +
s2

4
(Q(s) − 1) +

s3

8
Q(s)

∴ Q(s) =
2s2 + 12s + 8

8 − 4s − 2s2 − s3

(3)

Feller shows [5, p.278] that:

qn ≈
1.236840

1.0873778n+1 (4)

Using (4) we find that q9 = 0.535191 which closely approximates q9 by the
recursive method.

The connection between a generating function and probabilities is explained by
Feller in [5, pages 264-266]. For instance, if X is the number scored in a throw
of a perfect die the probability distribution of X has the generating function
s+s2+s3+s4+s5+s6

6 .

More generally, if X is a random variable assuming values 0, 1, 2, 3, . . . we de-
fine:

P[X = j] = p j , P[X > j] = q j (5)

Given (5) we have that:

qk = pk+1 + pk+2 + . . . (6)

The generating functions of the sequences p j and q j are then:

P(s) = p0 + p1s + p2s2 + p3s3 + . . . (7)
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Q(s) = q0 + q1s + q2s2 + q3s3 + . . . (8)

Note that P(1) = 1 so that P(s) converges absolutely for −1 ≤ s ≤ 1 and because
the coefficients of Q(s) are all less than 1 the series for Q(s) will converge for
−1 < s < 1. Note that Q(s) is not a probability generating function since the set
of probabilites q j is not a discrete probability function ( see (6) ).

This leads to the following theorem:

For −1 < s < 1:

Q(s) =
1 − P(s)

1 − s
(9)

This can be proved be noting that the coefficient of sn in (1− s) �Q(s) is qn− qn−1 =
−pn for n ≥ 1. When n = 0 we have q0 = p1 + p2 + · · · = 1 − p0. Hence,
(1 − s) �Q(s) = 1 − P(s).

Because we are interested ultimately in the expected number of tosses we need to
get a general expression for the expectation of a particular random variable.

Differentiating (7) we get:

P
′

(s) =

∞∑
k=1

k pk sk−1 (10)

(10) certainly converges for −1 < s < 1 and for s = 1 we have formally:

E[X] =

∞∑
k=1

k pk (11)

If the series in (10) exists, the expectation exists and, since |P′(s)| ≤
∑
∞

k=1 k pk |sk−1
| ≤∑

∞

k=1 k pk for −1 ≤ s ≤ 1, the derivative is continuous on [−1, 1]. When
∑
∞

k=1 k pk

diverges the expectation is said to be infinite (ie P′(1) = E[X] = ∞).

By the Mean Value Theorem there exists an ξ between 1 and s such that:

P
′

(ξ) =
1 − P(s)

1 − s
= Q(s) (12)

Because both P(s) and Q(s) are monotone, P′(s) and Q(s) will have the same limit
(finite or infinite). This means that:
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E[X] =

∞∑
j=1

j p j =

∞∑
k=1

qk (13)

or, in terms of generating functions:

E[X] = P
′

(1) = Q(1) (14)

Although we don’t need it for the purposes of this article the variance is:

Var[X] = P
′′

(1) + P
′

(1) − (P
′

(1))2 = 2Q
′

(1) + Q(1) − (Q(1))2 (15)

Consistent with Feller’s terminology [5, pages 307-9] an attribute E defines a
recurrent event if:

(a) In order that E occurs at the nth and the (n + m)th place of the sequence
(E j1 ,E j2 , . . .E jn+m) it is necessary and sufficient that E occurs at the last place of
each of the two subsequences (E j1 ,E j2 , . . .E jn) and (E jn+1 ,E jn+2 , . . .E jn+m);

(b) If (E occurs at the end of the nth place then identically:

P[E j1 ,E j2 , . . .E jn+m] = P[E j1 ,E j2 , . . .E jn] P[E jn+1 ,E jn+2 , . . .E jn+m] (16)

With each recurrent event E (which could be something like ”HTH” or ”HTT”)
there are associated two sequences defined for n = 1, 2, . . . :

un = P[E occurs on the nth trial] (17)

fn = P[E occurs for the first time on the nth trial] (18)

The generating functions associated with un and fn are:

U(s) =

∞∑
k=0

uk sk (19)

F(s) =

∞∑
k=0

fk sk (20)
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We define u0 = 1 and f0 = 0.

The uk do not form a probability distribution and for representative cases
∑

uk =
∞. However, because the events ”E occurs for the first time at the nth trial”are
mutually exclusive we will have:

f = F(1) =

∞∑
n=1

fn ≤ 1 (21)

This means that 1− f can be interpreted as the probability that E does not occur
in an indefinitely prolonged sequence of trials.

The probability that E occurs for the first time on trial ν then again on a later
trial n > ν is:

fν un−ν (22)

This is purely a result of the definitions of un and fn. The probability that E
occurs at the nth trial for the first time is:

fn = fn u0 (23)

Note the need for u0 = 1 in (23). Because of mutual exclusivity we have:

un = f1 un−1 + f2 un−2 + · · · + fn u0 for n ≥ 1 (24)

At this point we need the concept of a convolution (see [5] pages 266-8). Suppose
X and Y are independent integral valued random variables with probability
distributions P[X = j] = a j and P[Y = j] = b j. Then the event (X = j,Y = k) has
probability a j bk. If S = X + Y then the event S = r is the sum of the mutually
exclusive events:

(X = 0,Y = r), (X = 1,Y = r − 1), . . . , (X = r,Y = 0)

If cr = P[S = r] then the probability distribution of S is given by:

cr = a0br + a1br−1 + a2br−2 + · · · + ar−1b1 + arb0 (25)

Equation (25) is usually written a follows using the convolution symbol:
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{ck} = {ak} ∗ {bk} (26)

The sequences {ak} and {bk} have generating functions A(s) =
∑

ak sk and B(s) =∑
bk sk respectively. When we multiply the two generating functions termwise

and collect like powers of s we get:

a0b0 + (a0b1 + a1b0)s + (a0b2 + a1b1 + a2b0)s2 + (a0b3 + a1b2 + a2b1 + a3b0)s3+

· · · + (a0br + a1br−1 + a2br−2 + · · · + ar−1b1 + arb0)sr + . . .
(27)

Thus we have:

C(s) = A(s) B(s) (28)

Going back to (24) we see that the right hand side is the convolution { fk} ∗ {uk}

which by (28) has generating function F(s) U(s). The left hand side of (24) is
U(s) − u0 = U(s) − 1, hence U(s) − 1 = F(s) U(s). Thus the basic relationship
between the generating functions of { fk} and {uk} is:

F(s) =
U(s) − 1

U(s)
(29)

Given the theory developed above for the expectation it is convenient to recast
(29) as follows:

F(s) =
1

1 + 1
U(s)−1

=
1

1 + (1 − s)Q(s)
(30)

Then:

F
′

(s) =
Q(s) − (1 − s)Q′(s)
(1 + (1 − s)Q(s))2 (31)

But:
µ = F

′

(1) = Q(1) (32)

With this background we can now perform the required expectations for ”HTH”
and ”HTT”.
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3.1 Expectation calculation for ”HTH”

To develop the recurrence relationship for the probability of the first occurence
of ”HTH” consider the following diagram:

There are matches at positions 1 and 3. In what follows we denoted the proba-
bility of a head by p and the probability of a tail by q = 1 − p. Later we will of
course apply p = q = 1

2 but the general approach is preferable. The probability
of ”HTH” is p2q. The total probability of ”HTH” in the last 3 trials is:

p2q = un + pq un−2 (33)

Note that u0 = 1 and u1 = u2 = 0.

Multiplying (33) by sn and summing over k from 3 to ∞ (the equation is only
valid for that range) we have:

∞∑
k=3

p2q sk =

∞∑
k=3

uk sk +

∞∑
k=3

pq uk−2 sk

p2q
( 1
1 − s

− (1 + s + s2)
)

= U(s) − (u0 + u1 s + u2 s2) + pq (u1s3 + u2s4 + . . . )

p2q
( 1
1 − s

−
(1 − s3)

1 − s

)
= U(s) − 1 + pq s2 (u1s + u2s2 + . . . )

p2q s3

1 − s
= U(s) − 1 + pq s2(U(s) − 1)

= (U(s) − 1) (1 + pqs2)

∴
1

U(s) − 1
=

(1 − s)(1 + pq s2)
p2q s3

(34)

Recalling (30) we have:
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F(s) =
1

1 + (1 − s) (1+pq s2)
p2q s3

(35)

where Q(s) =
1+pq s2

p2q s3

Using (32) and the fact that p = q = 1
2 we have that the mean number of tosses

to obtain ”HTH” is:

µ = Q(1) =
1 + 1

4
1
8

= 10 (36)

3.2 Expectation calculation for ”HTT”

We apply the same logic as before as illustrated by this diagram:

The required recurrence relation is:

pq2 = un for n ≥ 1 (37)

Note u0 = 1.

As before, multiplying by sk and summing we have:

∞∑
k=1

pq2 sk =

∞∑
k=1

uk sk

pq2
( 1
1 − s

− 1
)

= U(s) − 1

∴
1

U(s) − 1
=

1 − s
pq2 s

(38)
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In this case:

Q(s) =
1

pq2 s
(39)

With p = q = 1
2 the mean number of tosses for ”HTT” is:

µ = Q(1) =
1
1
8

= 8 (40)
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